
Flexible instruction processors

Shay Ping Seng
Imperial College

Department of Computing
180 Queen’s Gate,
London SW7 2BZ,

England

sps@doc.ic.ac.uk

Wayne Luk
Imperial College

Department of Computing
180 Queen’s Gate,
London SW7 2BZ,

England

wl@doc.ic.ac.uk

Peter Y.K. Cheung
Imperial College

Department of Electrical &
Electronic Engineering

Exhibition Road, London SW7
2BT, England

p.cheung@ic.ac.uk

ABSTRACT
This paper introduces the notion of a Flexible Instruction
Processor (FIP) for systematic customisation of instruction
processor design and implementation. The features of our
approach include: (a) a modular framework based on “pro-
cessor templates” that capture various instruction processor
styles, such as stack-based or register-based styles;
(b) enhancements of this framework to improve functional-
ity and performance, such as hybrid processor templates and
superscalar operation; (c) compilation strategies involving
standard compilers and FIP-specific compilers, and the as-
sociated design flow; (d) technology-independent and tech-
nology-specific optimisations, such as techniques for efficient
resource sharing in FPGA implementations. Our current
implementation of the FIP framework is based on a high-
level parallel language called Handel-C, which can be com-
piled into hardware. Various customised Java Virtual Ma-
chines and MIPS style processors have been developed using
existing FPGAs to evaluate the effectiveness and promise of
this approach.

General Terms
Design

Keywords
High-level synthesis, ASIP, Instruction processors

1. INTRODUCTION
General-purpose instruction processors have dominated

computing for a long time. However, they tend to lose per-
formance when dealing with non-standard operations and
non-standard data that are not supported by the instruc-
tion set formats [20]. The need for customising instruction
processors for specific applications is particularly acute in
embedded systems, such as cell phones, medical appliances,
digital cameras and printers [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’00,November 17-19, 2000, San Jose, California.
Copyright 2000 ACM 1-58113-338-3/00/0011 ..$5.00

One way of supporting customisation is to augment an
instruction processor with programmable logic for imple-
menting custom instructions. Several vendors are offering
a route to such implementations [2, 23, 27]. The processors
involved are usually based on existing architectures, such as
those from ARM, IBM and MIPS. These fixed instruction
processor cores are interfaced to programmable logic, which
provides the resources that implement a set of custom in-
structions for a given application.

Another way of supporting customisation of instruction
processors is to implement them using existing FPGAs [8].
In this case, it is possible to customise the entire instruc-
tion processor at compile time [26] or at run time [6, 25].
While many of such instruction processors have been devel-
oped manually, Page [16] advocates an automatic method
for instruction processor design and optimisation based on
capturing the instruction interpretation process as a paral-
lel program. His approach has been used in developing a
number of instruction processors [5, 15, 24], although per-
formance comparison with other techniques has not been
reported.

Recent work on application-specific instruction processors
(ASIPs) demonstrates the benefits of their customisation [9,
12, 22]. The trade-offs involved in designing application-
specific processors differ from those of general-purpose pro-
cessors. Similarly, trade-offs involved in ASIC implemen-
tions of application-specific processors differ from those of
FPGA implementations.

This paper introduces the notion of a Flexible Instruc-
tion Processor (FIP) for systematic customisation of instruc-
tion processor design and implementation. The unique fea-
tures of our approach include: (a) a modular framework
based on “processor templates” that capture various in-
struction processor styles, such as stack-based or register-
based styles; (b) enhancements of this framework to im-
prove functionality and performance, such as hybrid pro-
cessor templates and superscalar operation; (c) compila-
tion strategies involving standard compilers and FIP-specific
compilers, and the associated design flow; (d) technology-
independent and technology-specific optimisations, such as
techniques for efficient resource sharing in FPGA implemen-
tations. Inspired by Page’s research [16], we have imple-
mented the FIP framework using a parallel language called
Handel-C, which can be compiled into hardware [3]. Various
Java Virtual Machines and MIPS style processors have been
developed to evaluate the effectiveness and promise of this
approach, using existing FPGAs.

Stack-based
processor

Fetch

Execute

Stack resources

instr 1

instr 2

...

#include stack
#include top_of_stack_
#include program_count
chan fetchchan;

par{
{// -- Fetch module --
Fetch_from_memory(inst
//send instr to Execut
fetchchan ! instr;
pc++;
...}

{// -- Execute module
//recieve instr from F
fetchchan ? instr;
switch (decode(instr))
 {
 #include stack_instr
 #include stack_instr
 ...}
}
}

Skeletal processor
template

Fetch

Execute

send Instruction

receive Done

receive
Instruction

decode()

switch()
{
 case :
 ...
}

instr 1
send Done

Instantiate
parameters

Figure 1: A skeletal processor template. The Fetch module fetches an instruction from external memory
and sends it to the Execute module, which waits until the Execute module signals that it has completed
updating shared resources, such as the program counter. This diagram also shows the instantiation of a
skeletal processor into a stack processor, and the Handel-C description of the stack processor.

2. FIPS
A FIP consists of a processor template and a set of param-

eters. The template can be used to produce different pro-
cessor implementations by varying the parameters for that
template, and by combining and optimising existing tem-
plates. Our work is intended to provide a general method
for creating processors of different styles. When compared
with a direct hardware implementation, instruction proces-
sors have the added overheads of instruction fetch and de-
code. However, there are also many advantages:

• FIPs allow customised hardware to be accommodated
as new instructions. This combines the efficient and
structured control path associated with an instruction
processor with the benefits of hand-crafted hardware.
The processor and its associated op-codes provide a
means to optimise control paths through optimising
compilers. Conventional ad hoc sharing regimes are
harder to optimise. Non-standard datapath sizes can
also be supported.

• Critical resources can be increased as demanded by
the application domain, and eliminated if not used.
Instruction processors provide a structure for these re-
sources to be shared efficiently, and the degree of shar-
ing can be determined at run time.

• Our FIP approach enables different implementations
of a given instruction set with different design trade-
offs. It is also possible to relate these implementa-
tions by transformation techniques [16], which provide
a means of verifying non-obvious but efficient imple-
mentations.

• FIPs enable high-level data structures to be easily sup-
ported in hardware. Furthermore, they help preserve
current software investments and facilitate the pro-
totyping of novel architectures, such as abstract ma-

chines for exact real arithmetic and declarative pro-
gramming [15].

Some of the above points will be explained later. Standard
general processors are highly optimised and are implemented
in custom VLSI technology. However, they are fixed in ar-
chitecture and they only represent a point in a spectrum of
possible implementations. FIPs provide a way of traversing
the entire spectrum to create customised processors that are
tuned for specific applications.

FIPs are assembled from a processor template with mod-
ules connected together by communicating channels. The
template can be used to produce different styles of proces-
sors, such as stack-based or register-based styles. The pa-
rameters for a template are selected to transform a skeletal
processor into a processor suited for its task (Figure 1). Pos-
sible parametrisations include addition of custom instruc-
tions, removal of unnecessary resources, customisation of
data and instruction widths, optimisation of op-code assign-
ments, and varying the degree of pipelining.

When a FIP is assembled, required instructions are in-
cluded from a library that contains implementations of these
instructions in various styles. Depending on which instruc-
tions are included, resources such as stacks, different decode
units are instantiated. Channels provide a mechanism for
dependencies between instructions and resources to be mit-
igated.

The efficiency of an implementation is often highly depen-
dent on the style of the processor selected. Specialised pro-
cessor styles, such as the Three Instruction Machine (TIM)
[15], are designed specifically to execute a specific language,
in this case a functional language. Even processor templates
designed to be general, such as the stack-based Java Virtual
Machine or register-based MIPS, are more efficient for dif-
ferent tasks. Hence, for a given application, the choice of
the processor style is an important decision. Issues such as
availability of resources, size of device and speed require-

Processor template

Fetch

Execute Execute

Instr 1

Instr 2

...

Figure 2: Superscalar or hybrid processor template.
Several Execute modules are composed together us-
ing communicating channels that maintain the in-
tegrity of shared resources. This also provides a
mechanism for creating hybrid processors. Different
Execute modules may implement different styles of
processors: stack-based or register-based styles.

ments are affected by the decision.
The FIPs in our framework are currently implemented in

Handel-C version 2.1 [3], a C like language for hardware
compilation. Handel-C has been chosen because it keeps
the entire design process at a high level of abstraction, which
benefits both the design of the processor and the inclusion of
custom instructions. Handel-C also provides a quick way to
prototype designs. Our focus is to provide FIPs that are cus-
tomised for specific applications, particularly light-weight
implementations for embedded systems. Using a high-level
language, such as Handel-C, simplifies the design process by
having a single abstract description and can provide a mech-
anism for demonstrating the correctness of the FIP [10, 16].

3. ENHANCING PROCESSOR TEMPLATES
The processor template framework introduced previously

is sufficient for describing a basic instruction processor. Mod-
ern instruction processors contain many features that en-
hance their efficiency: examples include superscalar archi-
tecture, pipelining, interrupts and memory management
units. This section outlines superscalar and hybrid proces-
sors as examples of more advanced processor designs. It also
explains how our framework can exploit run-time reconfig-
urable capabilities of the implementation medium.

The key issue to resolve in supporting superscalar ar-
chitectures in the processor template framework is that of
scheduling. Scheduling of instructions can take place either
at compile time or dynamically at run time. If scheduling
takes place at compile time, the associated compiler for that
processor should be responsible for scheduling. Otherwise,
the Fetch module in a FIP should incorporate a scheduling
algorithm.

In general, the Fetch module keeps track of resources used
and issues multiple instructions to its array of Execution
modules when appropriate. A superscalar processor pro-
vides a way for multiple resources to be used concurrently.

There is an opportunity to augment this framework with

hybridisation. Hybrid processors are FIPs that can execute
more than one style of instructions. Current complex proces-
sors can often be considered as hybrid processors. Intel x86
processors, for example, employ a register-based approach
for most instructions, while floating-point instructions work
on a stack. Hybridisation provides a systematic method that
combine advantages of various styles into a FIP.

Consider the code for a hybrid FIP. It is well known that
instructions for different styles of processors have different
characteristics. For instance, register-based processors tend
to have longer instructions and require more instructions in
a program, compared with the instructions for a stack-based
processor. Register-based instructions make it easier for par-
allelism to be exploited, while stack-based instructions tend
to have more dependencies and often run sequentially. The
possibility of combining multiple instruction formats into a
single format for a hybrid FIP allows the user to trade-off
speed with code size, which may be important for embedded
devices with limited storage.

The binary description given to a hybrid FIP may con-
tain instructions packed in the styles of different processors.
The Fetch module of a hybrid FIP has to incorporate an
additional level of decoding which determines an appropri-
ate style, and channel the instruction to the corresponding
Execute module.

For example, a hybrid processor may contain a MIPS and
a TIM Execute module, composed in the same way as su-
perscalar processors. This hybrid FIP can run MIPS code,
but it is augmented by its ability to support functional lan-
guages.

It is also possible to produce multiple processors. In this
case, different instruction streams can feed into each individ-
ual FIP that may communicate with one another via chan-
nels.

The modular design of FIPs provides a means for run-
time reconfiguration to be incorporated. Conventional pro-
cessors are designed to perform best in the most common
case. Run-time reconfiguration allows FIPs to dynamically
target applications.

Other advanced processor modules can be incorporated
into the processor in a similar way. Modules for interrupt
handling or memory management can be composed with
the standard template using channels. Opportunities exist
for these channels to be optimised and these are discussed
in section 5. Speculative execution can also be supported
by simultaneously executing both paths of a branch until
a guard condition is determined. Pipelining of instructions
can be composed with channels. Pipeline communications
can be simplified if we know that a hazard will not arise.
Profiling the application domain can provide this informa-
tion. Section 4 will discuss more about profiling and our
compilation strategy.

4. COMPILATION STRATEGY
The source code for an application can be in several forms:

C, Java, data flow graphs, for example. The compilation
from source code to hardware consists of two steps. A FIP
has to be created and the code running on the FIP has to
be generated.

Figure 3 shows the two possible compilation paths in our
framework. The right path involves an available compiler
to compile the source code. This compiler can be a stan-
dard compiler or a compiler created from a previous FIP

Source code

Annotated
source code

Compiled
code

Hardware description

Annotate source
code with
possible

optimisations

Compile
software code
with standard

compiler

Compile source
code with the

compiler generated
to target the
specific FIP

Optimise
compiled

code for FIP

Figure 3: Compilation path. Two paths are de-
scribed. The left approach uses a specially gener-
ated compiler that targets the FIPs natively, the
right approach uses a standard compiler.

design. Our design environment evaluates the compiled code
to determine possible optimisations for the FIP. It also reor-
ganises the code to exploit instruction-level parallelism and
other optimisations. This is similar to the idea of Just-
In-Time compilation (JIT) for Java virtual machines. The
advantage of this strategy is that existing compilers can be
used and precompiled code can execute on the processor.
Since it is often difficult to identify possible optimisations
in compiled code, this approach may yield a less optimum
solution than using a FIP-specific compiler.

In the left path of Figure 3, the source code is annotated
with relevant information, such as the frequency of the use
of instructions, common instruction groups and shared re-
sources. This step transforms standard source code into
source code that includes specific information that is use-
ful for optimisation of both the compiled code and the FIP.
This step corresponds to the profiling step in Figure 4. A
FIP specific compiler is then used to target this FIP. The
advantage of this strategy is that no information is lost dur-
ing the entire design flow, enabling the optimisation process
to be as effective as possible.

A detailed description of this path is shown in Figure 4.
The source code is profiled to extract information that can
help to identify what styles of FIPs are suitable, or the user
may specify the style directly. Recommendations may be
made depending on the style of the source code. For in-
stance, a stack-based processor is often a good choice for de-
scriptions with a large number of small procedures in object-
oriented style programming. The profiling step also collects
information about the possible degree of sharing and fre-
quency of certain combination of op-codes. At this stage,
user constraints such as latency and speed can be specified.

Once a FIP template has been decided, the design flow is
split into analysis and FIP instantiation. The analysis step
involves analysing sharing possibilities and introducing cus-
tom instructions. Run-time reconfigurable possibilities are
also explored. The FIP instantiation step involves technol-
ogy independent analysis on congestion, scheduling, speed,
area and latency. These two steps produce a domain specific
FIP and the corresponding FIP specific compiler.

Application
source code

Profiling:
Identify FIP styles

Application
data

FIP
library

FIP
template

Analysis:

Analyse
operations for
sharing and

operations for
custom

instructions

Identify runtime
reconfiguration

possibilities

FIP instantiation:

Architecture
optimisations:
Scheduling,
congestion
detection,
technology

independent
optimisations

Domain
specific FIP

Technology
specific

optimisations

FIP specific
compiler

Executable
FIP code

Hardware description

FIP
(and runtime

reconfiguration
variations)

Instruction
information

Processor
architecture
information

Anotated
source
code

Figure 4: FIP design flow.

Next, the FIP goes through technology specific optimisa-
tions such as resource binding and constraint satisfaction.
Following that, a FIP and its possible run-time reconfigura-
tion variations can be produced.

Potentially, the design iterations between the blocks la-
belled “FIP instantiation” and “technology specific optimi-
sations” in Figure 4 may be time consuming, because of the
overheads associated with placement and routing. We are
currently focusing on methods to reduce the design time by
incorporating techniques to model technology specific con-
straints, such as routing and operator binding.

The FIP specific compiler is used to compile the annotated
source code. A hardware solution is thus provided in the
form of a domain-specific FIP and compiled FIP code, ready
to be executed by the FIP.

Many of our current implementations are developed fol-
lowing the right path of Figure 3; these include the JVMs
described in Section 6. We are also refining the methods and
tools for the left path of Figure 3. At present, the analysis
and FIP instantiation steps in Figure 4 are largely manual,
and we are working on the automation of these steps to
complete our tool chain.

5. FIP OPTIMISATIONS
Optimisations for FIPs can occur at two levels. Both the

software and the processor can be optimised. We focus on
the optimisation of the processors.

Advances in optimising compilers and instruction proces-
sor designs can be adapted for use in FIP architectures and
compilers. We describe how these techniques can be mod-
ified for use with FIP systems. Optimisations can be cate-
gorised into four groups:

Technology independent

• Remove unused resources and instructions
• Customise datapaths and instructions
• Optimise op-code assignments
• Optimise channel communications between modules

Technology dependent (for FPGA implementation)

• Deploy special resources available: fast-carry chains,
embedded memory

• Introduce congestion management to reduce delays due
to routing

Processor style specific

• Processor type, such as JVM, MIPS, TIM
• Superscalar architecture, pipelining

Compiler specific

• Instruction level parallel scheduling
• Op-code re-ordering
• Loop unrolling, folding
• Predicated execution

Some of these optimisations have been presented in previ-
ous work [16]. The following describes custom instructions
and technology dependent optimisations.

Direct hardware implementations of specific data paths
can be incorporated into FIPs to be activated by custom
instructions. This improves performance as it reduces the

number of fetch and decode instructions. However, the more
custom instructions, the larger the FIP. Hence, the improve-
ment in speed is accompanied by an increase in size. The
choice of the type and the number of custom instructions is
important; this choice should also depend on how frequent
a particular custom instruction is used. Section 6 evaluates
the trade-offs in more detail.

Optimisations specific to certain processor styles are also
possible. These are often related to device dependent re-
sources. For example in a JVM, if multiple banks of mem-
ory exist, stack access could be enhanced so that the top
two elements of a stack can be read concurrently. Device
dependent resources can be exploited by using technology-
specific hardware libraries [14] and vendor provided macros,
such as Xilinx’s Relationally Placed Macros [28] or Altera’s
Megafunctions [1].

In FPGAs, unlike ASICs, registers are abundant but rout-
ing can incur a large delay penalty as well as increase the
size of a design. This feature of FPGAs places restrictions
on template designs. Routing congestions occur when a re-
source is used extensively by many operations. Criteria such
as the size of the resource or the routing density of neigh-
bouring modules may also affect the routing of a FIP. We
have identified three possible solutions. The first and sim-
plest solution is to pipeline the routing. The second solution
is to arrange the decoding network, which controls the ac-
tivation of a resource, as a pipelined tree. This results in a
shorter cycle time and a smaller logic to routing delay ratio,
at the expense of larger area and more complex circuitry.
The third solution is to replicate the resources. Resources
should only be shared when it is profitable to do so. For ex-
ample, instructions frequently require temporary registers
for intermediate results, so sharing of these resources is in-
efficient. For shared operations, we are able to trade-off
area and speed with latency. For instance, if the shared
resource is a single-cycle multiplier, it can be replaced by
several digit-serial multipliers, where parallel to serial con-
verters are placed at locations to reduce the routing conges-
tion. However, if the replicated resource is a shared stor-
age, care needs to be taken to ensure the consistency of the
state information. We are currently working on a method to
automatically provide a combination of resources that will
optimally trade-off congestion with latency and speed.

Using the first two techniques outlined above, we have op-
timised a JVM containing 40 instructions, all of which access
the stack. Preliminary studies show promise: for instance,
the optimisation has reduced the propagation delay of the
critical path by half.

6. IMPLEMENTATION AND EVALUATION
This section describes various implementations of a FIP

for the Java Virtual Machine, and compares their perfor-
mance against software and ASIC implementations. The
performance of a FIP for a MIPS style processor is also dis-
cussed.

6.1 Implementation
We have implemented a FIP based on the JVM specifi-

cation [13]. Many parametrisations and optimisations have
been investigated, including removal of unnecessary resources,
customisation of data and instruction widths, optimisation
of op-code assignments, and variation of the degree of pipelin-
ing. The first version of the JVM involves segregated re-

JVM Clock speed

0

10

20

30

40

50

60

70

80

90

Clock
Speed
(MHz)

N
O

P

Lo
ad

/
S

to
re

In
te

ge
r

A
rit

hm
et

ic

A
rr

ay
M

an
ip

ul
at

io
n

M
is

c

A
ll

Figure 5: Registered performance of a JVM on a
Virtex XCV1000 device with different available in-
structions.

sources that are shared. This provides good area utilisation
at the expense of speed, because of routing congestion.

The second version of the JVM introduces two stages of
pipelining and only shares irreplaceable resources, such as
the stack and main memory. Stack-based processors are in-
trinsically sequential. Speed optimisation of the JVM tends
to introduce parallelism that manifests as register style im-
plementations of instructions.

The third version of the JVM incorporates deeper pipelines
for certain instructions and ‘register’ style improvements
such as having top-of-stack registers. The top-of-stack reg-
isters are replicated. Instructions can be read from different
top-of-stack registers but are written back to the stack di-
rectly. Replicated registers are updated during the fetch cy-
cle. Most instructions are processed by four pipeline stages,
although certain instructions, such as the instruction for in-
voking functions, require deeper logic and their implemen-
tations have been partitioned into five or six pipeline stages.
Routing has also been pipelined to reduce the effects of con-
gestion.

The evolution of the three versions of the JVM demon-
strates trade-offs between the possible parametrisations.
Maximising sharing methods through conventional resource
sharing may introduce significant routing overheads. Con-
gestion management is necessary to identify the optimal de-
gree of sharing: when the amount of routing is beginning to
dominate the implementation medium.

Pipelining is useful for reducing clock cycle time. How-
ever, resources such as stacks may have operation dependen-
cies that limit the amount of overlapping between instruc-
tions, and they introduce latency when pipelined. Many of
our customised JVMs have been successfully implemented
using the RC1000-PP system [4].

6.2 Efficiency of FIP-JVM
The third version of the JVM described earlier is used

in the following evaluations. Figure 5 shows the theoretical

Devices
CaffineMark

Score
Speedup

Software JVM (Pentium II, 300 MHz)

FIP JVM (Xilinx Virtex, 33MHz)

Pipelined FIP JVM (estimated)

GMJ30501SB
Java Processor (ASIC, 200 MHz)

502

1019

3665

13332

1

2x

7x

27x

1

3.5x

13x

Figure 6: CaffineMark 3.0 Benchmark scores for dif-
ferent implementations of the JVM. The software
JVM is Sun Microsystems’ JVM version 1.3.0.

upper bound for this implementation to be roughly 80MHz,
when only the NOP instruction is supported. This shows
that the fetch-decoding structure is reasonably efficient. The
current program counter and data path size are 32 bits. The
clock speed can be further increased by reducing the pro-
gram counter size or improving the adder.

The performance of the FIP-JVM is compared with a
JVM running on an Intel Pentium II machine and on a Java
Processor [11] by Hyundai Microelectronics. The GMJ3050-
1SB is based on the picoJava 1 core [21] from Sun Microsys-
tems. The CaffineMark 3.0 [18] Java benchmark has been
used to measure performance. The CaffineMark benchmark
is a set of tests used to benchmark performance of JVMs
in embedded devices. These include tests on the speed of
Boolean operations, execution of function calls and the gen-
eration of primes.

Figure 6 shows the benchmark scores of our FIP proces-
sor together with software and ASIC. Our processor com-
pares favourably with software, and a version with a deeper
pipeline is estimated to run seven times faster. While the
ASIC runs fastest, there are however two points to keep in
mind. First, the ASIC processor is running at 200MHz, com-
pared to our JVM at 33MHz. Second, the ASIC processor
has fixed instructions, while we are able to incorporate cus-
tom instructions. The speedup provided by our FIP-JVM
is expected to increase towards that shown by the ASIC
processor as more custom instructions are added. In the fol-
lowing, we demonstrate the trade-offs of providing custom
instructions.

Direct hardware implementations have been developed to
manipulate a link list structure with separate circuits to
support different access procedures, such as inserting a link
and searching for a value. These direct implementations are
clocked between 40MHz to 70MHz, and can be incorporated
as data paths for custom instructions in the FIP-JVM.

Link lists may be used to organise emails or phone num-
bers in embedded systems such as cell phones. An insertion
sort algorithm has been written using both the direct hard-
ware approach and the FIP approach for comparison. The
direct hardware implementation takes 2.3ms to sort a list
of 100 links, while the FIP-JVM takes 6.4ms and the ASIC
JVM is estimated to take 1ms. The insertion of a link into
the list takes 22 Java instructions.

By including a custom instruction to insert a link, we can
reduce the execution time to 5ms, since the single custom
instruction takes 12 cycles to complete. There is a saving
of 10 cycles, and 10 fetch and decode cycles saved per in-

FIP vs Direct Hardware on Xilinx Virtex XCV1000-4

0

100

200

300

400

500

600

1 3 5 7 9

Number of access procedures supported

N
um

be
r

of
 V

irt
ex

 s
lic

e
us

ed

Direct hardware
virtex slice size

FIP virtex slice size

Figure 7: Device usage of MIPS style FIPs capable of running link list access procedures compared with
direct hardware implementation of these procedures. This graph shows the comparison between the amount
of FPGA resources used in a FIP and a direct hardware implementation without fetch and decode. This
also shows the portability between a fully shared implementation (FIP) and a direct hardware implementa-
tion. The direct implementations can be clocked collectively at 39MHz while the FIP runs only at 30MHz.
However, a link-list instruction may take tens of instructions to execute while only taking several cycles in
direct implementation. Device independent results also show a similar trend, with one instruction requiring
around 60 gates and registers, and 9 instructions taking 1706 gates and registers, compared to 901 gates and
registers for the FIP implementation.

struction. Note that one can have a custom instruction that
requires fewer cycles to execute, but the cycle time would
be longer. If two custom instructions were added, the ex-
ecution time is reduced to 3.1ms. However, the addition
of custom instructions not only speeds up the application,
but also increases the size of the FIP. The following section
addresses this trade-off using another FIP.

6.3 Efficiency of MIPS style FIP
We have implemented a MIPS style processor which can

be clocked at 30MHz. Two types of comparisons have been
carried out. Device-independent comparisons look at the
number of gates, registers and latches used. Device-de-
pendent comparisons look at the number of Xilinx Virtex
slices used. Figure 7 shows the trade-offs between a fully-
shared FIP implementation and a direct hardware imple-
mentation. In general, direct hardware implementation ex-
ecutes in fewer cycles and can be clocked at a higher fre-
quency than FIPs. An insert instruction, for instance, takes
12 cycles at 39MHz, compared to 22 cycles at 30MHz in
FIP. The direct hardware implementation takes 2.3ms to
sort a list of 100 links, while the FIP takes 7.1ms. How-
ever, the FIP uses 290 Virtex slices compared with the 460
slices used by the custom hardware. Figure 7 shows that the

current FIP implementation is smaller than the direct hard-
ware implementation for applications involving five or more
access procedures. The cross-over point provides a means
of estimating when it becomes unprofitable to include more
custom instructions. As more custom instructions are added
to the FIP, the cross-over point will shift upwards.

6.4 Evaluation summary
This study has shown that our initial assumptions are rea-

sonable: the FIP structure is efficient and provides a good
mechanism for resource sharing. The execution speed of the
FIP can be improved by incorporating custom instructions,
however this is at the expense of size. Furthermore, we can
utilise device-independent results to estimate the number
and type of custom instructions in a FIP. This provides a
way to automate the optimisation of sharing. As sharing in-
creases, the amount of routing congestion will also increase,
since a larger number of instructions in a FIP may result in
more congestion. Custom instructions reduce the number
of instructions, hence increasing throughput and reducing
congestion.

If the full instruction set of a particular architecture is re-
quired, it may be preferable to use an FPGA closely coupled
to an embedded processor [2, 23, 27].

7. CONCLUDING REMARKS
We have described a framework for systematic customi-

sation of instruction processors. The FIP approach enables
rapid development of instruction processors by parametris-
ing, composing and optimising processor templates. Either
a standard compiler or a FIP-specific compiler can be used
in the implementation process.

Current and future work includes extending our approach
to cover other processor styles such as adaptive explicitly
parallel instruction computing [17], refining existing tools
such as those determining the degree of resource sharing,
and integrating our tools with other related tools, for in-
stance those for run-time reconfiguration [19]. We are also
looking at ways to automatically select FIP styles and in-
stantiate FIP parameters, and techniques to retarget and
customise compiler and run-time systems for different ap-
plications.

8. ACKNOWLEDGMENTS
Many thanks to Matt Aubury, Steve Chappell, George

Constantinides, Arran Derbyshire, Roger Gook, Steve McK-
eever, Henry Styles, Timothy Todman and Huy Vu for their
comments and assistance. The support of Celoxica Lim-
ited, UK Engineering and Physical Sciences Research Coun-
cil (Grant number GR/24366, GR/54356 and GR/59658),
and Xilinx, Inc. is gratefully acknowledged.

9. REFERENCES
[1] Altera Corporation. Megafunctions.

http://www.altera.com/html/mega/mega.html.

[2] Altera Corporation.
Excalibur Embedded Processor Solutions.
http://www.altera.com/html
/products/excalibursplash.html.

[3] Celoxica. Handel-C Production Information.
http://www.celoxica.com.

[4] Celoxica. RC1000-PP from Celoxica.
http://www.celoxica.com.

[5] C. Cladingboel. Hardware compilation and the Java
abstract machine. M.Sc. thesis, Oxford University
Computing Laboratory, 1997.

[6] A. Donlin. Self modifying circuitry - a platform for
tractable virtual circuitry. In Field Programmable
Logic and Applications, LNCS 1482, pp. 199–208.
Springer, 1998.

[7] J. A. Fisher. Customized instruction sets for
embedded processors. In Proc. 36th Design
Automation Conference, pp. 253–257, 1999.

[8] J. Gray. Building a RISC system in an FPGA. In
Circuit Cellar: The magazine for computer
applications, pp. 20–27. March 2000.

[9] M. Gschwind. Instruction set selection for ASIP
design. In 7th International Workshop on Hardware
Software Codesign, pp. 7–11. ACM Press, 1999.

[10] J. He, G. Brown, W. Luk and J. O’Leary. Deriving
two-phase modules for a multi-target hardware
compiler. In Proc. 3rd Workshop on Designing Correct
Circuits. Springer Electronic Workshop in Computing
Series, 1996, http://www.ewic.org.uk
/ewic/workshop/view.cfm/DCC-96.

[11] Helborn Electronics. Java Processors.
http://www.helbon.co.uk.

[12] K. Küçükçakar. An ASIP design methodology for
embedded systems. In 7th International Workshop on
Hardware Software Codesign, pp. 17–21. ACM Press,
1999.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification (2nd Ed.). Addison-Wesley, 1999.

[14] W. Luk, J. Gray, D. Grant, S. Guo, S. McKeever,
N. Shirazi, M. Dean, S. Seng and K. Teo. Reusing
intellectual property with parameterised hardware
libraries. In Advances in Information Technologies:
The Business Challenge, pp. 788–795. IOS Press, 1997.

[15] C. J. G. North. Graph reduction in hardware. M.Sc.
thesis, Oxford University Computing Laboratory,
1992.

[16] I. Page. Automatic design and implementation of
microprocessors. In Proc. WoTUG-17, pp. 190–204.
IOS Press, 1994.

[17] K. V. Palem, S. Talla and P. W. Devaney. Adaptive
explicitly parallel instruction computing. In Proc. 4th
Australasian Computer Architecture Conf. Springer
Verlag, 1999.

[18] Pendragon Software Corporation. CaffineMark 3.0
Java Benchmark. http://www.pendragon-
software.com/pendragon/cm3/index.html.

[19] N. Shirazi, W. Luk and P. Y. K. Cheung. Framework
and tools for run-time reconfigurable designs. IEE
Proc.-Comput. Digit. Tech., 147(3), pp. 147–152, May
2000.

[20] H. Styles and W. Luk. Customising graphics
applications: techniques and programming interface.
In Proc. IEEE Symp. on Field Programmable Custom
Computing Machines. IEEE Computer Society Press,
2000.

[21] Sun Microsystems. PicoJava(TM) specification.
http://www.sun.com/microelectronics/picoJava.

[22] J. Teich and R. Weper. A joined architecture/compiler
design environment for ASIPs. In Proc. International
Conference on Compilers, Architecture and Synthesis
for Embedded Systems. ACM, 2000.

[23] Triscend. The Configurable System on a Chip.
http://www.triscend.com/products/index.html.

[24] R. Watts. A parametrised ARM processor. Technical
report, Oxford University Computing Laboratory,
1993.

[25] M. Wirthlin and B. Hutchings. A dynamic instruction
set computer. In Proc. IEEE Symp. on Field
Programmable Custom Computing Machines,
pp. 99–107. IEEE Computer Society Press, 1995.

[26] M. J. Wirthlin and K. L. Gilson. The nano processor:
a low resource reconfigurable processor. In Proc. IEEE
Symp. on Field Programmable Custom Computing
Machines, pp. 23–30. IEEE Computer Society Press,
1994.

[27] Xilinx. IBM and Xilinx team to create new generation
of integrated circuits.
http://www.xilinx.com/prs rls/ibmpartner.htm.

[28] Xilinx. Relationally Placed Macros.
http://toolbox.xilinx.com/docsan
/2 1i/data/common/lib/lib2 2.htm.

	Abstract
	Introduction
	FIPS
	Advantages of FIPS
	Fig 1: Skeletal processor template

	Enhancing Processor Templates
	Fig 2: Superscalar or hybrid processor template

	Compilation Strategy
	Fig 3: Compilation path
	Fig 4: Design Flow

	FIP Optimisations
	Implementation and Evaluation
	Fig 5: Registered performance
	Efficiency of FIP-JVM
	Fig 6: CaffineMark Benchmark
	Efficiency of MIPS style FIP
	Fig 7: FIP vs Direct Hardware implementation
	Evaluation summary

	Concluding Remarks
	References

